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The high-level recognition of human activity requires a priori hierarchical domain
knowledge as well as a means of reasoning based on that knowledge. Based on insights
from perceptual psychology, the problem of human action recognition is approached on
the understanding that activities are hierarchical, temporally constrained and at times
temporally overlapped. A hierarchical Bayesian network (HBN) based on a stochas-
tic context-free grammar (SCFG) is implemented to address the hierarchical nature
of human activity recognition. Then it is shown how the HBN is applied to different
substrings in a sequence of primitive action symbols via deleted interpolation (DI) to
recognize temporally overlapped activities. Results from the analysis of action sequences
based on video surveillance data show the validity of the approach.
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1. Introduction

The automated real-time understanding of human activities from a video sequence
is a topic of growing interest in recent times. In the field of video surveillance,
detecting suspicious activity in real-time would mean stopping crimes while they
are happening or even before they happen. In application to human-computer inter-
faces, computers could adjust according to the activity context of the user. An
intelligent system that recognizes high-level human activities offers a wide range of
applications to aid people in everyday activities.

To implement a system that recognizes human activities, our task is two-fold.
First, we need a psychological framework for characterizing human activity. Second,
we need a computational method of analyzing those activities.
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The characteristics of human activities can be learned from perceptual
psychology.22 Activities are hierarchical. They are organized, existing at various
levels of abstraction. For example, walking and running are a type of moving. Activ-
ities are also partonomical meaning that primitive actions are temporally ordered
(sequential). For example, the activity of leaving an object in a room might consist
of a sequence of primitive actions: (1) enter the room, (2) put down the object and
(3) exit the room. Activities can also be temporally overlapped. For example, the
transition of a person walking through a room might overlap with the activity of
the person departing from the room. From our perspective, it is difficult to iden-
tify the exact time at which the activity walking through has ceased and when the
activity departing has started. Thus there is an inherent ambiguity at transitions
between human activities which should be represented by a cognitive system.

To address the latter half of the problem, namely the computational recognition
of human activities from a sequence of video images, we need an efficient method of
incorporating the characteristics of activity mentioned above. The recognition sys-
tem must encode hierarchical information, capture temporally constrained activities
and accurately represent temporally overlapped activities.

Our contribution lies in the novel application of deleted interpolation (DI) — a
smoothing technique used in natural language processing — for recognizing tempo-
rally overlapped activities. This paper addresses the issue of hierarchical structure
by implementing a stochastic context-free grammar (SCFG). We convert the SCFG
into a Bayesian network (BN) to create a hierarchical Bayesian network (HBN)
which enables us to execute more complex probability queries across the grammar.
We then apply the HBN via DI to a string of observed primitive action symbols to
recognize various activities, especially those that are overlapped.

It is noted here that we are not directly addressing the issue of extracting sym-
bols from a video sequence. Instead, we assume that a set of reliable low-level obser-
vations (e.g. appearance and movement attributes) are available to us, allowing us
to focus on building up a scheme for activity recognition. Furthermore, the method
of grammar creation is not the focus of this paper and therefore the grammar has
been created heuristically.

2. Related Research

The majority of models that have been proposed for activity analysis are models
that represent an activity as a sequential transition between a set of finite states (i.e.
NDA,20 FSA,1 HMM,21 CHMM,18 VLHMM,7 LHMM,17 DMLHMM,8 ODHMM,11

SHSMM4). However, due to the fact that most simple activities do not have complex
hierarchical structure, these models have not explicitly incorporated the concept of
hierarchy into the model topology.

On the other hand, there have been a few works that have proposed hier-
archical models to recognize structured activities. Contributions from computer
vision started with Brand,2 when he utilized a deterministic action grammar to
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interpret a video sequence of a person opening a computer housing unit. Multi-
ple parses over a stream of outputs from the low-level event detector were ranked
and stored, giving priority to the highest ranking parse. Ivanov9 first used a SCFG
for action recognition using the Earley–Stolcke parser to analyze a video sequence
of cars and pedestrians in a parking lot. Moore14 also used a SCFG to recognize
actions in a video sequence of people playing Blackjack. They extended the work of
Ivanov by adding error correction, recovery schema and role analysis. Minnen13

built on the modifications made by Moore by adding event parameters, state
checks and internal states. They applied the SCFG to recognize and make pre-
dictions about actions seen in a video sequence of a person performing the Towers
of Hanoi task. From a background in plan recognition, Bui3 used a hierarchy of
abstract policies using Abstract Hidden Markov Models (AHMM) implementing
a probabilistic state-dependent grammar to recognize activities. The system rec-
ognizes people going to the library and using the printer across multiple rooms.
AHMMs closely resemble the Hierarchical Hidden Markov Models (HHMM)6 but
with an addition of an extra state node. Nguyen16 used an abstract Hidden Memory
Markov Model (AHMEM), a modified version of the AHMM, for the same scenario
as Bui.

The aforementioned works used domains with high-level activities delineated by
clear starting points and clear ending points, where the observed low-level action
primitives are assumed to describe a series of temporally constrained activities (with
the exception of Ivanov9). However, in our research we focus on a subset of human
activities that have the possibility of being temporally overlapped. We show that
these types of activities can be recognized efficiently using our new framework.

3. Modeling Human Action

Most human activities are ordered hierarchically much like sentences in a natural
language. Thus an understanding of hierarchy about human activities should be
leveraged to reason about those activities, just like one might guess at the meaning
of a word from its context. We assert that the SCFG and the BN lay the proper
groundwork for hierarchical analysis of human activity recognition using a vision
system.

Our justification in using a SCFG to model human activity is based on the idea
that it models hierarchical structure that closely resembles the inherent hierarchy
in human activity. Just as series of words can be represented at a higher level of
abstraction, a series of primitive actions can also be represented at a higher level
of abstraction. By recognizing the close analogy between a string of words and a
series of actions, we reason that SCFGs are well suited for representing grammatical
structure.

A SCFG is also able to describe an activity at any level in the hierarchy in
the same way humans are known to perceive activities at different abstractions
levels within a hierarchical structure. In contrast, standard sequential models like
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finite state machines, n-grams, Markov chains and hidden Markov models, do not
explicitly model hierarchical structure.

Despite the expressive power of the SCFG, they were created to characterize for-
mal language and thus in general, syntactic parsers are not well-suited for handling
noisy data. Bayesian networks give us the robustness needed to deal with faulty
sensor data, especially when dealing with human actions. In contrast to standard
parsing algorithms, the merit of using an BN is found in the wide range of queries
that can be executed over the network.19 In addition, BNs can deal with nega-
tive evidence, partial observations (likelihood evidence) and even missing evidence,
making it a favorable framework for vision applications.

4. Recognition System Overview

Our recognition system consists of three major parts (Fig. 1). The first is the action
grammar (a SCFG) that describes the hierarchical structure of all the activities
to be recognized. Second is the hierarchical Bayesian network that is generated
from the action grammar. Third is the final module that takes a stream of input
symbols (level 1 action symbols) and uses deleted interpolation to determine the
current probability distribution across each possible output symbol (level 2 action
symbol).

We give the details of our system based on the use of the CAVIAR data set,5

which is a collection of video sequences of people in a lobby environment. The
ground truth for each agent in each frame is labeled in XML with information
about position, appearance, movement, situation, roles and context. For practical
reasons, we make direct use of the ground truth data to produce a sequence of
primitive action symbols as the low-level input into our system.

Window over input string

(Level 1 actions)
DI Distribution over activities

(Level 2 actions)

SCFG HBN

Fig. 1. System flow chart. Dashed lines indicate off-line components and solid lines indicate
online components. Level 1 action symbols and the HBN are merged via the deleted interpolation
step to produce level 2 actions.
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4.1. Action grammar

The set of terminals (level 1 action symbols) is defined as T = {en, ne, ex, mp,

wa, in, br, pu, pd} (definitions given in Table 1). The level 1 action symbols
were generated directly from the CAVIAR XML ground truth data using log-
ical relationships between the appearance, movement and position information

Table 1. Definition of the grammar symbols: (a) Grammar for producing level 1
symbols, (b) Definition of the level 1 actions (terminal symbols), (c) Definition of the
level 2 actions and intermediate actions (nonterminal symbols).

(a)

Level 1 Actions Appearance Movement Position

en appear — —
ex disappear — —
ne visible active/walking near exit/entrance
br visible active/inactive near a landmark
in visible inactive —
mp visible active —
wa visible walking —
pu referenced to object properties
pd referenced to object properties

(b)

Level 1 Actions Meaning

en enter: appears in the scene
ex exit: disappears from the scene
ne near exit/ entrance: moving near an exit/entrance
br browse: standing near landmark
in inactive: standing still
mp move in place: standing but moving
wa walk: moving within a certain velocity range
pd put down: release object
pu pick up: contact with object

(c)

Level 2 Actions Meaning

AR Arriving: Arriving into the scene
BI Being Idle: Spending extra time in the scene
BR Browsing: Showing interest in an object in the scene
TK Taking away: Taking an object away
LB Leaving behind: Leaving an object behind
PT Passing Through: Passing through the scene
DP Departing: Leaving the scene

Intermediate Actions
AI Action in Place: Taking action while in place
MV Moving: Moving with a minimum velocity
MT Move to: Moving in place after walking
MF Move from: Walking after moving in place
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for each frame [Table 1(a)]. The set of action symbols (called level 2 actions)
A = {BI, BR, TK, LB, PT, AR, DP}, along with a set of intermediate action sym-
bols I = {AI, MV, MT, MF} were created manually to be the set of high-level
actions to be used by the system [Table 1(c)]. Level 2 actions are a special subset
of nonterminal symbols in the level 2 grammar because they are direct abstrac-
tion productions of S (start symbol), i.e. they are directly caused by S. The set of
nonterminals N is defined as N = I ∪ A. The set of production rules Σ and their
corresponding probabilities are given in Table 2. We note here that since grammar
creation is not the primary focus of our work, the grammar (including the rule
probabilities) are manually defined.

4.2. Hierarchical Bayesian network

We use a previously proposed method19 to transform the action grammar (level 2
grammar) into a hierarchical Bayesian network (HBN). We use the term HBN
because information about hierarchy from the SCFG is embedded in the BN.

Table 2. Level 2 action grammar.

Production Rule Probability Production Rule Probability

S → BI 0.20 BR → br 0.20
S → BR 0.10 BR → MV br 0.20
S → TK 0.05 BR → br mp 0.30
S → LB 0.05 BR → MV br mp 0.30
S → PT 0.30
S → AR 0.15 LB → pd 0.50
S → DP 0.15 LB → MV pd 0.20

LB → pd mp 0.05
BI → AI 0.10 LB → pd wa 0.05
BI → MV AI 0.10 LB → pd mp wa 0.10
BI → AI MV 0.10 LB → mp pd mp 0.10
BI → mp AI MV 0.10
BI → mp 0.20 DP → ex 0.40
BI → MF mp 0.10 DP → wa ne ex 0.30
BI → MF 0.10 DP → ne ex 0.20
BI → MV ne MV 0.10 DP → wa ne 0.10
BI → AI wa ne 0.10

MV → MF 0.20
TK → pu 0.50 MV → MT 0.20
TK → MV pu 0.20 MV → wa 0.30
TK → pu mp 0.20 MV → mp 0.30
TK → pu wa 0.10
TK → MV pu MV 0.10 MF → mp wa 1.00

MT → wa mp 1.00
PT → en wa ex 0.70
PT → ne wa ne 0.30 AI → in 0.60

AI → br 0.20
AR → en 0.50 AI → pu 0.10
AR → en MV 0.50 AI → pd 0.10
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As mentioned before, the SCFG is converted into a BN because it has the ability
to deal with uncertainty. When the sensory input is uncertain, the BN can process
a multinomial distribution across a discrete variable instead of a single value with a
probability of one. In addition, the BN can also deal with missing evidence (a missed
detection) by marginalizing over the values of the missed variable.

By converting the action grammar into a HBN, evidence nodes E contain termi-
nal symbols, query nodes Q contain level 2 actions A and hidden nodes H contain
production rules Σ or intermediate action I. Results of transforming the grammar
in Table 2 into a HBN is depicted in Fig. 2.

We denote the probability density function (PDF) for level 2 actionsa to be
P(A|e) where A = {A1, A2, . . . , Av} is the set of all level 2 actions (states). e =
{e1, e2, . . . , el} is a string of evidence at the evidence nodes of the HBN where l
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Fig. 2. Hierarchical Bayesian Network (maximum length l = 3). The content of each node type
is depicted by a bar chart.

aP will be used when dealing with probabilities of multivalued discrete variables. It denotes a set
of equations with one equation for each value of the variable.
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is the maximum length of the HBN. The probability of a specific level 2 action is
defined as the sum of the probabilities from each of the query nodes,

P(A|e) = P(Q1 = A|e) + · · · + P(Qu = A|e). (1)

When there are v different level 2 actions, P(A|e) represents a set of v equations

P (A1|e) = P (Q1 = A1|e) + · · · + P (Qu = A1|e),

P (A2|e) = P (Q1 = A2|e) + · · · + P (Qu = A2|e),
(2)· · ·

P (Av|e) = P (Q1 = Av|e) + · · · + P (Qu = Av|e).

The probabilities of the level 2 actions A = {A1, A2, . . . , Av} always sum to one
when the evidence can be explained by the grammar because A is the set of all
possible productions of S (start symbol). Thus,

v∑

i=1

P (Ai|e) = 1. (3)

The computational cost of calculating the beta probabilities is O(Pnmdm) and
the cost of building the Bayesian network is O(Pnm+1dmT m) (more details in
the original paper19). P is the number of rules induced by the grammar, d is the
maximum number of abstraction levels, n is the maximum length of a sentential
string, m is the maximum production length and T is the maximum number of
entries of any conditional probability table in the network. Although the cost of
building the network grows exponentially as the grammar grows in complexity the
network only needs to be computed once offline. With respect to inference with
the Bayesian network, exact inference becomes intractable as the network grows in
size, which means that other well known approximation algorithms will need to be
utilized for bigger networks.

4.3. Deleted interpolation

The concept of deleted interpolation (DI) involves combining two (or more) models
of which one provides a more precise explanation of the observations but is not
always reliable and the other which is more reliable but not as precise. A precise
model requires that the input data be a close fit to the model and will reject
anything that does not match. A reliable model exhibits greater tolerance in fitting
the data and is more likely to find a match. Combining models allows us to fall
back on the more reliable model when the more precise model fails to explain the
observations. It is called deleted interpolation because the models which are being
interpolated use a subset of the conditioning information of the most discriminating
function.12

In our system we assume that the analysis of a long sequence of evidence is
more precise than that of a shorter length because a long sequence takes into con-
sideration more information. However, when analysis over a long (more precise)



November 12, 2008 15:52 WSPC/115-IJPRAI SPI-J068 00682

Recognizing Human Activities from a Sequence of Primitive Actions 1351

input sequence fails we would like to fall back on analysis based on a shorter (more
reliable) subsequence.

To implement this, we calculate the current probability distribution S across
level 2 actions, at each time instance, as a weighted sum of models,

S =
l∑

i=1

λiP(A|Oi), (4)

where Oi is the string of full evidence when i = 1 and represents smaller subsets
of the evidence sequence as the index i increases. The weights are constrained by∑l

i=1 λi = 1.
Representing our system as a dynamic Bayesian network yields the network in

Fig. 3. Memory nodes are added to the network to store past evidence and l is the
length of the analysis window. When l = 3, the current probability distribution of
the level 2 actions over the temporal window is given by the equation

S = λ1P(A|O1) + λ2P(A|O2) + λ3P(A|O3), (5)

whereb

O1 = {et
1, e

t−1
2 , et−2

3 } (6)

O2 = {et
1, e

t−2
2 , enone

3 } (7)

O3 = {et
1, e

none
2 , enone

3 }. (8)

Current state

Memory

Observed evidence

St−2 St−1 St

m2 m2 m2

m1 m1 m1

et−2 et−1 et

Fig. 3. System depicted as a dynamic Bayesian network where the memory elements store past
evidence.

benone is a terminal symbol that represents an end of the sequence.
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The first term P(A|et
1, e

t−1
2 , et−2

3 ) is the activity probability distribution of the
complete set of evidence and represents activities that have started at t − 2. The
second term P(A|et

1, e
t−2
2 , enone

3 ) is the activity probability distribution for a partial
set of evidence and represents activities starting at t − 1. Likewise, the last term
P(A|et

1, e
none
2 , enone

3 ) is a probability distribution for activities starting at t. This is
the mechanism that effectively allows the system to represent overlapped activities.

5. Experimental Results

The following experiments show that our method is well-suited for recognizing
sequential and overlapped single-agent activities. In the first two experiments, we
show the advantage of using DI as opposed to not using DI. In the latter two
sections, the effect of the values chosen for grammar rule probabilities and the
mixture weights are examined.

The video data used for this experiment was taken in a lobby environment
(Fig. 4) and the sequence of level 1 actions were generated using the labeled

300 428 504

644 741 884

970 1057 1025

Fig. 4. Key frames for the “Leave Behind and Pick Up” (Leave1) sequence.
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CAVIAR data. Analysis was run on six video sequences (Walk1, Walk2, Browse1,
Browse2, Leave1 and Leave2) to test the performance of the system. The recogni-
tion results are depicted as stacked area graphs for each type of activity and are
shown in Figs. 5–7. In each figure, the ground truth is given along with the results
for each of the four different experimental setups.

Probabilistic inference with the BN was performed using an exact algorithm
(junction tree) with Netica15 for all of the experiments. However, as mentioned
previously, as the size of the grammar (and the BN) increases, approximation algo-
rithms will need to be used to perform the inference task.

5.1. Ground truth

The ground truth was compiled from multiple users, as a normalized sum of the
interpretations of the video data. Each labeler was given a definition (Table 3) for
each level 2 action and directed to label every frame for each action independently.
Users were given the option of labeling each frame with a yes, maybe or no (10
points for yes, 5 points for maybe and 0 points for no). No restrictions were placed
on the number of times they could relabel or review the video sequences. They were
not shown the string of primitive symbols extracted from the CAVIAR data.

5.2. Using deleted interpolation

The recall rate, precision rate, miss rate and false detection rates are given for each
of the six video sequences in Table 5 when deleted interpolation was implemented
using the grammar in Table 2. The definition of each rate is given in Table 4.

The precision rate was 88% after filtering out a common problem (explained
later). Arriving and Departing had the highest precision rate (∼95%) because the
activities were highly dependent on location (i.e. near a known exit or entrance)

Table 3. Definitions for ground truth labeling.

Arriving A period of time where the agent has just entered the scene. It must occur
near a known exit or entrance.

Passing Through Agent appears to be simply walking through the lobby. Pattern should

look like: Enter + passing through + exit. Agent is not looking around.

Being Idle The agent appears to be walking around aimlessly. Usually characterized
by walking slowly and stopping in place. Sometimes includes browsing.

Browsing Period of time where the agent is near a landmark (counter, magazine
rack, information booth). The agent appears to be looking at a landmark.

Taking Away Agent appears to be picking something up or preparing to pick something
up. Includes movement just before and after picking up the object.

Leaving Behind The agent appears to be putting something down or preparing to put
something down. Includes movement just before and after putting down
the object.

Departing Period of time where it seems that the agent is about to exit the scene.
Ceases once the agent exits the scene.
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Table 4. Definitions: (a) Definition of the data types, (b) formulas for the
different rates.

(a)

A Number of Relevant documents Retrieved
B Number of Relevant documents Not Retrieved
C Number of Irrelevant documents Retrieved
D Number of Irrelevant documents Not Retrieved

(b)

Recall: A/(A+B) Relevant data retrieved from all relevant data
Precision: A/(A+C) Relevant data retrieved from all retrieved data
Miss: B/(A+B) Relevant data missed (1-Recall)
False: C/(C+D) Irrelevant data retrieved from all irrelevant data

which made early detection relatively easy. In contrast, Taking Away had the lowest
precision rate because the system was only able to detect the activity after the
removed item was detected visually.

The frequent misdetection of Being Idle as Passing Through had a negative
effect on four of the six sequences, contributing to a 16% drop in the precision
rate (Browse1, Browse2, Leave1 and Leave2). This drop in performance can be
explained by the fact that the ground truth was collected under conditions that
differ from our system. Under normal conditions, a system cannot know if an agent
will become idle or not and therefore can only label an initial detection of a mobile
agent, as Passing Through the scene. In contrast, the ground truth was labeled with
the foreknowledge of what the agent would do in the subsequent frames, giving the
user the ability to mark an agent as being idle upon entry into the scene. Therefore,
we are justified in removing the misdetection of Being Idle as Passing Through to
obtain a more realist precision rate.

The recall (capture) rate was 59% (equivalently, a miss rate of 41%) which
indicates that the system was not able to detect the activity for the complete
duration of the level 2 action as described by the ground truth data. The low recall
rate is caused by similar reasons stated for the precision rate. The foreknowledge of
the entire sequence gave the labeler the ability to recognize activities much earlier
than the visual information permits. In contrast, the system changes its output
only when a new terminal symbol (a significant visual change) is encountered.

The false alarm rate was 3% (not including the effects of Passing Through). The
low false alarm rate is expected because the input symbols (level 1 actions) only
change when there is a significant change in an agents visual characteristics.

An example of the detection of overlapping (concurrent) activities can be seen
in the first transition from Passing Through to Departing in Fig. 5(c). At about
frame 315, both activities are detected and depicted as two stacked regions. Similar
detections of overlapped activities are observed for Browsing and Being Idle in
Fig. 6(c).
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In comparison to the ground truth, it was observed that the transitions between
activities were abrupt for the experimental results. The sharp transitions can be
attributed to the fact that the input into the system was a discrete sequence of
primitive actions (level 1 actions), where each symbol was output only when a
significant visual change was detected in appearance and movement (as defined by
the CAVIAR data). In contrast, the ground truth was based on more detailed visual
queues (e.g. body posture, head position) and foreknowledge of the entire sequence.
The ground truth was also averaged over the labels of multiple users, which allowed
the transition between activities to become smoother.

5.3. No deleted interpolation

To understand the advantage of using DI, an experiment was performed again on
the same sequences but without the use of DI. The removal of DI is equivalent

Table 5. Summary: (a) Counts for the different rates, (b) rates for recall, precision, miss and
false alarm.

(a)

Data Type Walk1 Walk2 Browse1 Browse2 Leave1 Leave2 Total

Arriving

A 52 144 87 90 116 38 527
B 3 129 42 50 49 3 276
C 8 0 0 7 2 13 30
D 218 904 553 443 719 836 3673

Passing
Through

A 215 569 0 0 0 0 784
B 32 63 0 0 0 0 95
C 0 48 202 320 263 143 976
D 34 497 480 270 623 747 2651

Being
Idle

A 0 0 360 63 229 645 1297
B 0 0 211 346 208 158 923
C 0 0 0 29 151 43 223
D 281 1177 111 152 298 44 2063

Browsing

A 0 0 189 21 0 209 419
B 0 0 65 112 0 155 332
C 0 0 5 0 0 42 47
D 281 1177 423 457 886 484 3708

Taking
Away

A 0 0 0 0 82 12 94
B 0 0 0 0 32 56 88
C 0 0 0 0 76 0 76
D 281 1177 682 590 696 822 4248

Leaving
Behind

A 0 0 0 0 62 16 78
B 0 0 0 0 27 47 74
C 0 0 0 0 8 27 35
D 281 1177 682 590 789 800 4319

Departing

A 26 158 20 48 151 45 448
B 94 522 31 9 76 27 759
C 0 0 16 0 1 0 17
D 161 497 615 533 658 818 3282
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Table 5. (Continued )

(b)

Rate Walk1 Walk2 Browse1 Browse2 Leave1 Leave2 Average

Arriving

Recall 94.5% 52.7% 67.4% 64.3% 70.3% 92.7% 65.6%
Precision 86.7% 100.0% 100.0% 92.8% 98.3% 74.5% 94.6%

Miss 5.5% 47.3% 32.6% 35.7% 29.7% 7.3% 34.4%
False Alarm 3.5% 0.0% 0.0% 1.6% 0.3% 1.5% 0.8%

Passing
Through

Recall 87.0% 90.0% — — — — 89.2%
Precision 100.0% 92.2% — — — — 44.5%

Miss 13.0% 10.0% — — — — 10.8%
False Alarm 0.0% 8.8% 29.6% 54.2% 29.7% 16.1% 26.9%

Being Idle

Recall 63.0% 15.4% 52.4% 80.3% 58.4%
Precision — — 100.0% 68.5% 60.3% 93.8% 85.3%

Miss — — 37.0% 84.6% 47.6% 19.7% 41.6%
False Alarm 0.0% 0.0% 0.0% 16.0% 33.6% 49.4% 9.8%

Browsing

Recall — — 74.4% 15.8% 0.0% 57.4% 55.8%

Precision — — 97.4% 100.0% 0.0% 83.3% 89.9%
Miss — — 25.6% 84.2% 0.0% 42.6% 44.2%

False Alarm 0.0% 0.0% 1.2% 0.0% 0.0% 8.0% 1.3%

Taking
Away

Recall — — — 71.9% 17.6% 51.6%
Precision — — — — 51.9% 100.0% 55.3%

Miss — — — — 28.1% 82.4% 48.4%
False Alarm 0.0% 0.0% 0.0% 0.0% 9.8% 0.0% 1.8%

Leaving
Behind

Recall — — — — 69.7% 25.4% 51.3%
Precision — — — — 88.6% 37.2% 69.0%

Miss — — — — 30.3% 74.6% 48.7%
False Alarm 0.0% 0.0% 0.0% 0.0% 1.0% 3.3% 0.8%

Departing

Recall 21.7% 23.2% 39.2% 84.2% 66.5% 62.5% 37.1%
Precision 100.0% 100.0% 55.6% 100.0% 99.3% 100.0% 96.3%

Miss 78.3% 76.8% 60.8% 15.8% 33.5% 37.5% 62.9%
False Alarm 0.0% 0.0% 2.5% 0.0% 0.2% 0.0% 0.5%

to the use of a single HBN shifted over time over a fixed temporal window to
recognize activities. Since subsequences of the evidence are not used to interpolate
the results, several level 2 actions based on smaller strings were not detected by the
system.

The level 2 action that was affected the most was Departing because the sequence
of primitive symbols {wa, ne, ex} was never detected by the input sequences. Fur-
thermore, since Departing relies heavily on the use of smaller substrings of one
or two level 1 action symbols to detect, removing the DI framework significantly
reduces the systems ability to recognize departures. In contrast, one instance of
temporal concurrence was detected in Fig. 7(b) between Being Idle and three
other activities. This overlap was captured because in the grammar, a subset of
the sequences of actions used by Being Idle was also used for the recognition of
Browsing, Leaving Behind and Taking Away.
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(d) DI with uniformly distributed rule probabilities, (e) DI with uniform mixture weights.
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5.4. DI using uniformly distributed grammar parameters

The original grammar parameters (production rule probabilities) were set at the
discretion of a knowledge engineer, giving greater weight to sequences that were
more likely to occur. However, in this set of experiments, the probabilities were
distributed uniformly among all possible productions for each nonterminal symbol.
That is, the production probabilities P (N → ζi) were uniformly distributed such
that for the nonterminal N ,

∑
i P (N → ζi) = 1 where ζ is a string of one or more

symbols on the right-hand side of the production rule.
Since changing the probabilities of the rules changes only the proportions

between overlapped activities and not the duration of activities themselves, the
rates remain the same. It is interesting to observe that the proportion of the prob-
abilities between activities remain virtually unchanged after rule probabilities have
been changed [Figs. 5(d), 6(d) and 7(d)]. This is due to the fact that the struc-
tural analysis of a symbol sequence plays a larger role in determining the results
compared to the role of the probabilities of the rules. Therefore, it is more important
to include the correct rules in the grammar than to assign the optimal probabilities.

5.5. DI using uniformly distributed mixture weights

Previously, the mixture weights for deleted interpolation were set so that λ1 > λ2 >

· · · > λl, giving more weight to longer subsets of the data. For this experiment, the
mixture weights λi were uniformly distributed, giving equal weight to each term in
the interpolation equation. That is,

∑l
i=1 λi = 1 and λi = 1/l. A uniform weighting

scheme can be interpreted as giving equal confidence to each of the l terms in the
DI equation.

Small changes in the proportions between overlapped probabilities were observed
for the detection of Departing and Passing through (a higher probability for
Departing), which was closer to the ground truth. In general however, the results
remained similar to the results of using the original weighting scheme [Figs. 5(e),
6(e) and 7(e)]. As in the previous experiment, we observe here that the structural
constraints outweigh the values of the mixture weights such that the proportions
between overlapped activities change only nominally when the mixture weights are
varied. Again, since the mixture weights only affect the proportion between the
probabilities of the actions and not their durations, the detection rates remain
unchanged.

6. Summary and Conclusion

We have addressed the issue of hierarchical representation of human activity by
basing our system on a SCFG. We then converted the SCFG to a HBN to allow
the system to make complex probabilistic queries needed for uncertain inputs. As a
preliminary test, we then applied the HBN using DI to discover overlapped activities
over a string of discrete primitive action symbols. Through a set of preliminary
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experiments, it was shown that our methodology is well-suited for detecting the
overlap of simple single-agent activities.

We recognize that manually defining the grammar may be problematic when a
predefined grammar is not available or when the input string is noisy. In another
work, we develop an unsupervised grammar learning technique to extract a gram-
mar from a noisy input sequence generated from a real video sequence.10

The input sequence for this work was a discrete string of action symbols. How-
ever, in reality human actions are continuous and vision-based methods for detecting
human actions are usually uncertain and noisy. Future work will focus on dealing
with more realistic inputs under a similar hierarchical framework.
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